	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р	
1						CALCULATI	ONS OF LOUSIA	ANA WATER	QUALITY-	BASED EFFL	UENT LIMITAT	TIONS					
2								For an Ark	ansas Rive	r/Stream							
3								(Reserved)									
4	STEP 1:	INPUT TWO	LETTER C	ODE FOR E	COREGION	(Use Code at	Right)	GC									
5		Basin Name						Ouachita									
6											Codes & TSS	for Ecoregi					
7	FACILITY																
8										Ouachita Mts	. Eco (OM) =	2.0 mg/l	Arkansas (Ft.	Smith to Dar	danelle Dam	12.0 mg/	
9	Permittee							GP Crosset	t	Ozark Highla	nds Eco (OH) =	2.5 mg/l	Arkansas (Da	rdanelle Dan	n to Terry L&	10.5 mg/	
	NPDES Permit I	No.						AR0001210)	Boston Mts. I	Eco (BM) =	1.3 mg/l	Arkansas (Te	ry L&D to L8	3D No. 5)	8.3 mg/	
	Outfall No.(s)							SMS2		Ark River Val	ley Eco (AV) =	3.0 mg/l	Arkansas (L&	D No. 5 to M	outh)	9.0 mg/	
	Plant Effluent Fl							45.00		Gulf Coastal			White (Above Beaver Lake)			2.5 mg/	
	Plant Effluent Fl	low (cfs)						69.53		Delta Ecoreg	ion (DL) =	8.0 mg/l	White (Below	Bull Shoals	to Black Riv)	3.3 mg/	
14													White (From I	Black River to	o Mouth)	18.5 mg/	
	RECEIVING ST	REAM											St. Francis Ri			18.0 mg/	
16													Ouachita (Abo			2.0 mg/	
	Is this a large river? (see list at right)(enter "1" if yes, "0" if no; make entry as a number)					number)	1					Ouachita (Below Caddo River)			5.5 mg/		
	Name of Receiv							Ouachita R	ver				Red River			33.0 mg/	
	Waterbody Seg							2D									
	Is this a lake or reservoir? (enter '1' if yes, '0' = no; make entry as a number)					0			Total Hardnes	s for:							
	Second Enter E							0			Arkansas Rive			Red River =			
	(Reserved)	DO	NOT INPUT	DATA INTO	CELL H22,	H23 & H24	LEAVE BLANK=	(Reserved)							is River = 103 mg/l		
	(Reserved)										White River = 1	116 mg/l					
24		(Reserved)		(Reserved)				(Reserved)									
25				(Reserved)				(Reserved)			Gulf Coastal =				ount = 31 mg		
26				(Reserved)				(Reserved)			Ozark Highland		/I		alley = 25 m	ıg/l	
27				(Reserved)				(Reserved)			Boston Mount :	= 25 mg/l		Delta = 81 r	mg/l		
20	Ecoregion TSS	(ma/l) (For I	orgo Divor G	Coo List to D	iaht\			8.00			Large Rivers						
	Ecoregion Hard		arge River, s	See LIST TO K	igrit)			36.40			Mississippi Riv	or Arkansa	e Divor Pod I	Pivor			
	Enter 7Q10 (cfs		cal Flow	(Reserved)	(Posonyod)				(Reserved		White (Below o						
	Long Term Ave				(IVGSGIAGR)					(Reserved)	Ouachita (Below						
	Using Diffusers		vicaii i 10W (C	10)				no 1200.00	(IVeselven	(IZESEIVEU)	Ouaciiila (Beil	w confluenc	e with Little ivii	55. (1/1/61)			
	pH (Avg)	(169/140)						7.01			For industrial a	and fodoral f	acility uso tho	highest mor	thly average	flow	
	Percent (%) of 0	Pritical Flow	for Chronic (ritorio				0.33			for the past 24					IIOW	
	Percent (%) of (0.33			ioi tile past 24	monuis. FO	I FOIWS, USE	uie uesign ii	Ow.		
	Water Effect Ra		IOI ACUIE CII	liciia				1.00			#VALUE! => I	No violation	or Not Applied				
38	Ave Monthly Lin	nit I TA Multi	nlier (Ref: na	nge 103 TSD	for WO-Bas	ed Toyics Cor	l atrol)	1.55			99999999.00 =>						
30	Max Daily Limit	I TA Multiplia	or (Rof: "	age 103 13D	101 NA C4-D42	" 1	III (II)	3.11			3333333.00 =>	INU LEAVAL	L & Guidellile				

	Α	В	С	D	Е	F	G	Н		J	K	L	М	N	0	Р
40							_									
41	STEP 2:	INPUT AMBI	ENT AND E	FFLUENT C	ATA											
42		CALCULATE	IN-STREAM	M WASTE C	ONCENTRA	TIONS										
43																
44	DATA INPUT			For less tha	in 20 data po	ints enter geoi	metric mean con	centration as	micro-gran	n per liter (ug/	l or ppb).					
45				For 20 or m	ore data poir	its in set enter	highest concent	ration as mic	ro-gram pe	er liter (ug/l or	ppb).					
46																
47							level" (DL) but t									
48							level" (DL) and			1QL, "0" is use	ed.					
49				If a firm value	ue is reported	l, even less th	an MQL, the rep	orted value is	used.							
50										(11.10)						
51							late the Instrear	n waste Con	centration	(IWC)						
52					er to CPP for		*0= . 0=\									
53				Where:	да СD) + (Qe	*2.13*Ce)] / (F	· Qa + Qe)							-		
54 55					oam Wasta C	Concentration								-		
56							vina									
57		F = Fraction of stream allowed for mixing Ce = Reported concentration in effluent														
58		Cb = Ambient stream concentration upstream of dischar														
59		Qe = Plant effluent flow														
60						stream at disc	harge point expr	essed as the	7Q10 or h	armonic mean	flow for human	health criter	ria			
61							Q10 for Chronic									
62					` / `	ĺ ĺ										
	The following fo	rmulae conve	rt metals rep	oorted in tota	al form to dis	solved form if	criteria are in dis	solved form								
64																
	Kp = Kpo * (TSS)						artition coefficier									
	C/Ct = 1/(1 + K)						uspended solids					nt for intermi	ttent stream)			
67	Total Metal Crite	eria (Ct) = Cr	/ (C/Ct)			C/Ct = Fraction	n of metal disso	lved; and Cr	= Dissolve	d criteria value	9					
68																
69				*Stream Li	near Partitio	n Coefficient	(Insert "Dissolv	ed" Conc in	Column B	to convert to	Lake Linear Pa	artition Coe	fficient			
		Dissolved														
70	Tatal Matal	Value in		14	-l-b- (-)	14.5	0/01	Total Value			16	-l-b- (-)	IZ-	0/04	Total Value	
70	Total Metals	Stream		Kpo	alpha (a)	Кр	C/Ct	rotal value			Kpo	alpha (a)	Кр	C/Ct	rotal value	
	Arsenic			480000	-0.73	105192.687	0.543023333	0.00			480000.00	-0.73	105192.69	0.5430233	0	
	Cadmium			400000	-0.73	381564.802		0.00			3520000.00	-0.73	519636.77			
	Chromium(3)			3360000	-0.93	485809.037		0.00			2170000.00	-0.92	1237728.63		0	
	Copper			1040000	-0.74		0.358961238	0.00			2850000.00	-0.27	438595.20			
	Lead			2800000	-0.74		0.190693894	0.00			2040000.00	-0.53	677629.77		0	
	Mercury			2900000	-1.14		0.315703262	0.00			1970000.00	-1.17	172922.28			
	Nickel			490000	-0.57	149773.434	0.454920253	0.00			2210000.00	-0.76	455034.04			
	Zinc			1250000	-0.7	291572.81	0.300067592	0.00			3340000.00	-0.68	812166.88		0	
	Silver			2400000		281856.825	0.307233386	0.00			2400000.00	-1.03		0.3072334	0	
81		*Note: Use this	section to conve	ert lab concentr	ations shown as	"dissolved" to "tot	al"									

34 C 35 36 37 C 38 39 00 C 91 92 93 C 94 95 96 L	The following foodmium Chromium Tri Chromium Hex Copper Lead	ormulas are us	ed to calculate wa Acute Chronic Acute Chronic Acute Chronic Acute Acute Chronic Acute	ter quality cri		WER X CF1 X 6 WER X CF2 X 6 WER X 0.316 X WER X 0.86 X 6	e(1.128[ln(ha e(0.7852[ln(ha e(0.819[ln(h	ardness)]- nardness)	3.828)	Dissolved WQC (ug/l) 1.24 0.49	Total WQC(ug/l)	CF1 = 1.1366 CF2 = 1.1016	72 - [0.0418 72 - [0.0418	38*In(hardnes	is)]
334 C 335 336 337 C 338 339 00 C 31 32 33 C 32 33 C 34 34 35 36 C 36 4 36 C 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38	Cadmium Chromium Tri Chromium Hex Copper	ormulas are us	Acute Chronic Acute Chronic Acute Chronic Acute Chronic Acute Acute Acute	ter quality cri		WER X CF1 X 6 WER X CF2 X 6 WER X 0.316 X WER X 0.86 X 6	e(1.128[ln(ha e(0.7852[ln(ha e(0.819[ln(h	ardness)]- nardness)	3.828)	1.24	, ,	CF1 = 1.1366	72 - [0.0418 72 - [0.0418	38*In(hardnes	ss)]
35 36 37 38 39 90 91 92 93 94 95 96 19 98 99 80 90 90 90 90 90 90 90 90 90 90 90 90 90	Chromium Tri Chromium Hex Copper		Chronic Acute Chronic Acute Chronic Acute Chronic			WER X CF2 X 6 WER X 0.316 X WER X 0.86 X 6	e(0.7852[ln(h e(0.819[ln(h	nardness)				CF1 = 1.1366 CF2 = 1.1016	72 - [0.0418 72 - [0.0418	38*In(hardnes	ss)]
36 37 38 39 90 01 92 93 02 94 95 96 19 98 99 00	Chromium Hex		Acute Chronic Acute Chronic Acute Acute Acute			WER X 0.316 X WER X 0.86 X 6	e(0.819[ln(h	,	-3.490)	0.49		CF2 = 1.1016	72 - [0.0418	38*In(hardnes	
37 C 38 39 90 C 91 92 93 C 94 95 96 L 97 98 99 M	Chromium Hex		Acute Chronic Acute			WER X 0.86 X 6		nardness)						20 .ii(iiaiaii63	[(8ذ
38 39 90 C 91 92 93 C 94 95 96 L 97 98 99 M	Chromium Hex		Acute Chronic Acute			WER X 0.86 X 6		ardnese\	1						
39 C C C C C C C C C	Copper		Acute Chronic Acute				2(0 819[In/ha			239.83					
90 C 91 92 93 C 94 95 96 L 97 98 99 M	Copper		Chronic Acute					ardness)]+	-1.561	77.80					
91 92 93 03 05 95 96 10 97 98 99 M	Copper		Chronic Acute												
92 93 04 95 96 197 98 99 M			Acute			WER X 0.982 X	16			15.71					
93 C 94 95 96 L 96 L 97 98 99 M						WER X 11 X 0.9	962			10.58					
94 95 96 L 97 98 99 M															
95 96 L 97 98 99 M	_ead					WER X 0.96 X				6.57					
96 L 97 98 99 M	_ead		Chronic			WER X 0.96 X	e(0.8545[ln(h	nardness)	-1.465)	4.79					
97 98 99 N 00	ead														
98 99 № 00			Acute			WER X e(1.273				21.16		CF3 = 1.4620	3 - [0.14571	2*In(hardness	;)]
99 № 00			Chronic			WER X e(1.273	[In(hardness)]-4.705)*	CF3	0.82					
00						·									
	Mercury		Acute			WER X 0.85 X 2	2.4			2.04					
01			Chronic			WER X 0.012				0.01					
	Nickel		Acute			WER X 0.998 X				601.97					
03			Chronic			WER X 0.997 X	e(0.8460[ln	(hardness)]+1.1645)	66.85					
04															
05 Z	Zinc		Acute			WER X 0.978 X				48.61					
06			Chronic			WER X 0.986 X	e(0.8473[ln	(hardness)]+0.7614)	44.39					
07															
08 S	Silver		Acute			WER X 0.85 X	e(1.72[ln(har	dness)]-6	.52)	0.61					
09															
	Cyanide		Acute			WER X 22.36				22.36					
11			Chronic			WER X 5.2				5.20					
12															
	Arsenic		Acute			WER X 360				360.00					
14			Chronic			WER X 190				190.00					
15															
	Beryllium		Acute			WER X 130		-		130.00				\longrightarrow	
17			Chronic			WER X 5.3	-			5.30					
18	S - 1 1		A4			WED V 00	1			00.00					
	Selenium		Acute		 	WER X 20			+	20.00				\longmapsto	
20			Chronic		-	WER X 5	1		+	5.00				\longmapsto	
21	Flore de Hannelon de			Ma dal (labor for a 1	define the Direct	 		+					\vdash	
	ne following for		cable to the Jet Stre											├	
23		DF	= ((2.8 * D * 3.1416			% of effluent at d								 	
24		DF							neaith criteria	200 feet for mixi	ng zone.			 	
25		DF	= #VALUE!	Acute	#VALUE!	Chronic	#VALUE!	Bloacc.	+					 	
26 27 T	The fellowing - f-		to coloulate the fire	4 m n n n 1 1 1 n n 1	annontentis - //	M(C) for oas!: :::	II. storet		+	+				\longmapsto	
	ne following for	muias are used	to calculate the ins	tream waste c	oncentration (vvc) for each po	oiiutant:		+					\vdash	
28			0. 1/5	151 1/ 0: :	(0.40.)(0.1)	0.03.75	100	0.11	4 22	10 ===:			. 0	<u> </u>	
29			C = [(Frac X Critica												
30 31			e EPA Statistical Fa C = (DF X Ce) + Cb				ith the Geon	netric Mea	an of the Ce's;	use 1 for more th	an 20 data p	points with the	<u>maxımum</u> C	э.	

	А	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р
													LA Acute	LA Chronic		
			Number of		EPA	Background	Effluent	Domestic	Acute	Chronic		Domestic	Aquatic	Aquatic	LA Bioacc.	
132	POLLUTANTS		Data points	MQL	Statistical	Conc.	Conc.	Supply	Aquatic	Aquatic	Bioacc.	Criteria	Criteria	Criteria	Criteria	
						Cb	Ce	IWC	IWC	IWC	IWC					
133				ug/l	Factor	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
	METALS AND															
	Arsenic Total		1	0.5	2.13	0	1.7	0.20	2.31	0.54	0.20	50	339.80	150.00	10	
	Copper Total		1	0.5	2.13	0	3.7	0.43	5.02	1.18	0.43	########	19.82	15.03	1000.00	
	Mercury Tot		1	0.005	2.13	0	0.009	0.00	0.0122	0.0029	0.0010	2	2.04	0.012	2	
141	12. Nickel Total		1	0.5	2.13	0	9.2	1.07	12.48	2.93	1.07	########	1325.89	147.37	999999	
	16. Zinc Total		1	20	2.13	0	21.07	2.46	28.59	6.70	2.46	########	162.00	147.93	5000.00	
143	129. Phenols, 7	Total	1	5	2.13	0	17	1.98	23.07	5.41	1.98	9999999	9999999.00	#########	5	
144																
145						Ambient	Effluent	Domestic	Acute	Chronic	Human	Criteria	Aquatic	Aquatic	Health	
146	BASE/NEUTRA	L COMPOU	INDS		2.13	Cb	Ce	IWC	IWC	IWC	IWC	ug/l	ug/l	ug/l	ug/l	
147	70. Bis(2-ethylh	exyl)phthala	1	10	2.13	0	2.679	0.31	3.64	0.85	0.31	########	9999999.00	#########	59	
148																
	PESTICIDES						-									
150	113. Dieldrin		5	0.02	2.13	0	0	0.00000	0.00000	0.00000	0.00000	########	0.24	0.0557	0.00005	
151																
152																

	Α	В	С	D	E	F	G	Н	I	J	K	L.	М	N	0	Р
153																
154																
	STEP 3:	APPLICABL	E WATER Q	UALITY-BA	SED LIMITS											
156																
157																
158																
			Permit	Permit	Permit	Permit		EPA								
			Daily	Monthly	Daily	Monthly		Bioac								
159 F	POLLUTANTS		Maximum	Average	Maximum	Average		Status								
160			ug/l	ug/l	lb/day	lb/day										
161	Dieldrin		NO	NO	NO	NO		N/A								